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Abstract—Driven by the demand for spatial intelligence and holistic scene perception, omnidirectional images (ODIs), which provide
a complete 360° field of view, are receiving growing attention across diverse applications such as virtual reality, autonomous driving,
and embodied robotics. Despite their unique characteristics, ODIs exhibit remarkable differences from perspective images in terms
of geometric projection, spatial distribution, and boundary continuity, making it challenging for direct domain adaption from existing
perspective-based methods. In this survey, we present a comprehensive review of recent techniques in panoramic vision with a
particular emphasis on the perspective-to-panorama adaptation problem. At first, we revisit the panoramic imaging pipeline and
projection methods to build the prior knowledge required for analyzing the structural disparities between ODIs and perspective ones.
Then, we summarize three challenges of domain adaptation, including severe geometric distortions near the poles, the non-uniform
sampling in Equirectangular Projection (ERP), and the periodic continuity of panoramic boundaries. Based on the discussions above,
we cover 20+ representative tasks drawn from more than 300 research papers in two dimensions. On one hand, we present a cross-
method analysis of representative strategies for addressing panoramic specific challenges across different tasks. On the other hand, we
conduct a cross-task comparison and classify panoramic vision into four major categories: visual quality enhancement and assessment,
visual understanding, multimodal understanding, and visual generation. In addition, we discuss open challenges and future directions,
emphasizing data, models, and applications that will drive the advancement of panoramic vision research. Compared to previous surveys
that focused on task-specific pipelines, ours has a more unified and evolving landscape of panoramic visual learning. We hope that our
work can provide new insight and forward-looking perspectives to advance the development of panoramic vision technologies. Our

project page is https://insta360-research-team.github.io/Survey-of-Panorama/.

Index Terms—Panoramic Vision, Domain Gap, Projection Distortion.

1 INTRODUCTION

In recent years, computer vision techniques have made signif-
icant progress in understanding 2D perspective images, benefiting
a wide range of tasks, including recognition, reconstruction, and
generation, in numerous real-world applications. Driven by deep
learning, many classic architectures and learning paradigms have
been developed under the camera’s assumptions of perspective
projections, supported by publicly available datasets [1]-[4] and
widespread real-world deployment [5], [6]. However, with the
growing demand for immersive perception and holistic scene
understanding, omnidirectional images (ODIs), which provide a
complete 360° field of view, have drawn increasing attention from
the research community. Compared to conventional perspective
images, ODIs can provide broader spatial coverage and richer
contextual information, making them indispensable for emerging
applications such as virtual reality (VR) [7], autonomous driv-
ing [8], and embodied robotics [9].

Despite their potential, ODIs differ significantly from perspec-
tive images in terms of imaging geometry. As illustrated on the
right side of Fig. 1, panoramic representations introduce unique
challenges, including geometric distortion, uneven spatial sam-
pling, and boundary continuities, which are especially common
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in standard formats such as Equirectangular Projection (ERP).
These differences result in an extreme domain gap, where methods
trained in perspective images often fail to generalize effectively
to panoramic scenarios. The planar assumptions embedded in
conventional deep models hinder their ability to handle spherical
geometry and full-scene coverage, thus limiting the adaptability of
perspective-based techniques and slowing progress in omnidirec-
tional vision. Then, methods specifically designed for panoramic
vision have emerged. Unless otherwise specified, we use the terms
omnidirectional and panoramic to represent a 360° view, as both
terms are widely used.

During the past decade, several surveys have reviewed specific
aspects of omnidirectional vision, including 360° video streaming
and compression [10], [11], visual quality assessment [12], indoor
layout estimation [13], super-resolution [14], optical systems [15],
and 3D perception tasks [16]-[19]. More recently, a review [20]
has provided a system-level overview of deep learning applications
in panoramic vision. In contrast to their structural-paradigm-based
categorization, our work begins from the more fundamental per-
spective—panorama gap, thoroughly examining task-specific dif-
ferences between perspective and panoramic representations, and
systematically analyzing the resulting methodological variations.
We aim to provide methodology-level insights for addressing
panoramic vision tasks while integrating promising emerging
technologies to broaden future research directions.

By this motivation, we investigate various ODI methods for
each specific task from a perspective-to-panorama viewpoint,
analyzing the strategies and efforts to bridge the domain gap from
both vertical (cross-method) and horizontal (cross-task) perspec-
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Fig. 1: From spherical image to Panoramic ERP and perspective image, ERP preserves a complete field of view compared to perspective
images, but introduces three major domain gaps: (1) geometric distortion, (2) non-uniform spatial sampling, and (3) boundary continuity.

tives. Moreover, we place particular emphasis on two aspects.
On one hand, we highlight ODI imaging systems and several
emerging and rapidly evolving techniques, emphasizing the poten-
tial of diffusion- or auto-regressive- or 3D-reconstruction-based
generative paradigms guided by ODI priors. On the other hand,
the limitations of existing approaches and promising future direc-
tions are discussed. Together, these dimensions bring a holistic
understanding of the methodological landscape in omnidirectional
vision and uncover opportunities for innovation at the intersection
of geometry, semantics, and generation.

To this end, this survey reviews over 20 representative tasks
based on over 300 research papers, and is organized into several
core sections, each focusing on a key component of panoramic
vision. Section 2 revisits the panoramic imaging pipeline, from
acquisition to stitching and projection, bringing with a clear foun-
dation for understanding panoramic—perspective differences and
supports subsequent methodological analysis. Section 3 presents
the three intrinsic characteristics of ODIs which distinguish them
from perspective images and reveal the roots of the domain gap,
followed by a cross-method analysis of representative mitigation
strategies. Section 4 conducts a cross-task comparison that syn-
thesizes common insights and highlights methodological trends. It
also identifies several rapidly evolving techniques, such as diffu-
sion models, 3D Gaussian Splatting, and multimodal fusion, which
are increasingly emerging but remain systematically unexplored
in previous surveys. Last, Section 5 discusses open challenges
and promising future directions, with a focus on data, models, and
applications that will advance future research on panoramic vision.

As a unique modality that allows spatially comprehensive 360°
perception, panoramic vision demonstrates strong potential and
practical value in various applications such as spatial intelligence
or immersive interaction. Through our comprehensive survey, we

identify that bridging existing research gaps by transferring and
adapting insights from the conventional perspective-vision domain
can substantially benefit omnidirectional computer vision. We
hope that our work can provide more insightful and forward-
looking guidance for future research in this field.

2 PANORAMIC IMAGING BACKGROUND

This section presents background knowledge on panoramic imag-
ing, discussing its representative imaging systems, the stitching
pipeline, and widely adopted projection formats. Additional details
are provided in our supplementary file.

2.1 Imaging Systems

Panoramic imaging systems capture 360° scenes for holistic per-
ception in vision tasks. Unlike perspective cameras, they achieve
ultra-wide fields of view through wide-angle refraction, mirror-
based reflection, or multi-camera stitching. In this section, we
introduce seven representative designs, as illustrated in Fig. 2.
Fisheye Panoramic System is an ultra-wide angle optical system
with a field of view (FoV) greater than 180°. In Fig. 2(a), it
employs a front group of two to three negative meniscus lenses
that compress the wide object-side FoV into a narrower cone,
which is then relayed by a subsequent lens group for aberration
correction. Such a system has practical advantages, including com-
pact design, simplified image acquisition, lower manufacturing
cost, and improved installation stability. Since the optical path
is “folded” through multiple front stage elements, fisheye optics
inherently produce substantial distortion, often in the range of
15-20%, which renders distortion control a central challenge in
ultra—wide-angle lens design.

Catadioptric Panoramic System is shown in Fig. 2(b), which
integrates reflective and refractive optical elements to achieve
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Fig. 2: Illustration of Seven Typical Panoramic Imaging Systems: Optical Designs for Capturing 360° Field-of-View.

single-viewpoint 360° capture. Incoming light is first redirected by
a curved mirror and then focused onto the image sensor through a
relay lens group, which also contributes to aberration correction.
By combining mirror reflection to redirect ambient light into
the optical path, catadioptric systems achieve an extended FoV
with distortion typically above 10% while also providing broader
coverage and higher spatial resolution compared to fisheye optics.
However, they often suffer from a central blind spot caused by an
occlusion from the mirror structure itself.

Hyper-hemispheric Lens System is illustrated in Fig. 2(c), which
employs a series of meniscus lenses to capture light from the entire
360° surroundings. To address the issue of the central blind spot,
a forward-view lens group is combined with a mirror to image
the blind region, forming two separate optical paths with different
focal lengths that include the panoramic and forward channels. By
integrating dual optical paths, hyper-hemispheric systems extend
the FoV to 360° x 260°, providing nearly complete spherical
coverage and comprehensive ultra—wide-angle imaging.

Panoramic Annular Lens, shown in Fig. 2(d), employs a coaxial
catadioptric configuration that replaces the fisheye’s front lens
group with a compact mirror—lens assembly. The light from
the full 360° surroundings undergoes two refractions and two
reflections, forming a narrow-angle beam that passes through the
aperture stop and relay lens group before reaching the sensor, pro-
ducing a 2D annular panoramic image based on a planar cylindri-
cal projection. This design enables full 360° horizontal FoV with
a vertical FoV of 3, while significantly reducing system size and
complexity compared to fisheye optics. However, the small front
mirror inevitably introduces a central blind zone corresponding to
a half-FoV angle « and limits its vertical completeness.

Panomorph Imaging System Fig. 2(e) enhances sensor uti-
lization by applying spatially varying anamorphic magnification,
realized through cylindrical or toroidal optics, to concentrate pixel
density in user-defined regions of interest (ROIs). Compared to
the traditional fisheye lenses that uniformly compress angles,
Panomorph optics allocate higher resolution to targeted areas
while reducing redundancy elsewhere, thus improving data com-
pression, bandwidth efficiency, and semantic scene understanding.

Single Camera Scanning and Multiple Cameras Stitching
Fig. 2(f) generate panoramas by stitching images captured from
different viewpoints. They can be divided into two categories. The
first method utilizes a single static camera that rotates in place to
capture the entire field of view, after which the acquired images
are stitched together through geometric alignment techniques. The
second employs a fixed multi-camera rig, in which cameras simul-
taneously capture images from different directions, followed by
stitching into a seamless panorama. While rotating single-camera
systems are low-cost and straightforward, their long scanning
process prevents real-time or gaze-based imaging. By contrast,
multi-camera rigs enable real-time construction but require precise

synchronization and calibration to avoid misalignment artifacts.
Monocentric Panoramic System is presented in Fig. 2(g), which
adopts a spherically concentric architecture, where all optical sur-
faces share a common center of curvature. This design is inspired
by the compound eyes of arthropods, which enable curved image
sensors to be directly coupled with multiple apertures or optical
fibers, resulting in a compact yet high-quality panoramic imaging
configuration. By ensuring symmetric light entry, monocentric
systems reduce optical aberrations and provide uniform imaging
performance across ultra-wide fields of view. They are particularly
well-suited for multi-aperture or fiber-coupled setups, combining
compact design with high-quality imaging.

2.2 Stitching

Panorama stitching refers to the process of aligning and blending
a set of images that cover a 360° view into a seamless panoramic
image. In the left side of Fig. 3, we illustrate the typical pipeline,
which includes data pre-processing, data association, geometric
alignment, and image blending.

Data Preprocessing involves classical image signal processing
(ISP) steps such as demosaicing, noise reduction, camera cali-
bration, distortion correction, and exposure/color compensation.
Noise is reduced using filters, with its intensity depending on cam-
era parameters [21], while calibration maps 3D world coordinates
to 2D pixels, with different camera types (e.g. pinhole, fisheye)
requiring distinct models such as polynomial [22] or Zurich [23].
The distortion correction also compensates for the radial and
tangential deviations, and motion estimation or common-view
extraction may be further applied for more reliable stitching.
Data Association establishes alignment across views, typically
categorized into three strategies. First, spatial association matches
current and previous frames using visual features via descriptors
such as SIFT [24], SURF [25], ORB [26], or LSD [27]. Second,
geometric association takes advantage of epipolar constraints to
reduce the search space. Finally, photometric association utilizes
optical flow to extract motion-consistent feature points between
frames for temporal correspondence estimation.

Geometric Alignment ensures robustness and consistency under
wide FoV and nonlinear distortions, where planar homographies
are often inadequate. Outlier rejection (e.g., RANSAC [28]) is es-
sential for reliable transformation estimation, while local warping
(e.g., mesh-based) addresses depth variation and parallax. Seam
optimization techniques, such as graph cut or energy-minimizing
seams, are then applied to refine transitions in overlapping regions.
Image Blending is the final step to ensure seamless visual
transitions, compensating for color and lighting variations be-
tween images. Three mainstream strategies are widely used: (1)
linear blending (feathering) achieves smooth transitions through
weighted averaging in overlaps; (2) multiband blending (Laplacian
pyramids) for scale-adaptive fusion and reduced ghosting; and (3)
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Fig. 3: Comprehensive Pipeline for Panorama Stitching: Preprocessing involves classical image signal processing (ISP) steps, including
demosaicing, denoising and correction, Data Association through keypoint detection and matching, Geometric Alignment using
RANSAC and homography estimation, and Image Blending with gain compensation and straightening. Representative projection
methods for 360° images: (a) spherical projection as the foundational representation mapping content onto the unit sphere, from which
several planar projections are derived, including (b) equirectangular projection with longitude—latitude mapping, (c) cubemap projection
with six 90° perspective faces, (d) icosahedron projection with near-uniform sampling, (e) tangent projection via local planar mapping,
and (f) panini projection preserving vertical lines while compressing horizontal fields.

Poisson-based fusion for global gradient consistency, with efficient
variants such as MVC blending to improve speed.

2.3 Projection Formats

Projection is defined as the process of mapping spherical content
to 2D formats that serves as the foundation of panoramic vision.
Different projection schemes aim to balance distortion, directional
continuity, and computational efficiency for specific tasks. As
illustrated in the right-hand side of Fig. 3, there are three main and
several other projections. On one hand, the spherical projection di-
rectly represents directions on the unit sphere, the Equirectangular
Projection (ERP) is most widely adopted for its simple bijective
mapping, and the Cubemap Projection (CMP) alleviates ERP’s
severe polar distortion by sampling along cube faces. On the other
hand, more advanced designs such as Icosahedron Projection,
Tangent Projection, and Polyhedron Projection further improve
geometric fidelity and facilitate compatibility with perspective-
based vision models. In the following, we briefly introduce those
six kinds of projections due to the page limitations. A more
detailed description of the projection transformations is provided
in the supplementary material.

Spherical Projection. A 360° camera can be modeled as pro-
jecting all visible 3D points onto the surface of a unit sphere.
This representation provides a unified, distortion-free view of all
directions and serves as the foundation for panoramic imaging.
Equirectangular Projection (ERP). As the most widely used
format, ERP directly unwraps spherical longitude and latitude onto
a 2D plane, similar to a world map. While efficient for storage and
rendering, it introduces severe distortions near the poles.
Cubemap Projection (CMP). CMP maps the sphere onto six
cube faces, each covering a 90° FoV. This reduces polar distortion
compared to ERP and is therefore well-suited for panoramic
rendering and processing.

Polyhedron Projection (PP). PP approximates the sphere with
a polyhedron (e.g., icosahedron) and maps spherical points onto
its polygonal faces. Recursive subdivision of faces yields nearly
uniform sampling with reduced distortion, but inevitably increases
overall representation complexity.

Tangent Projection (TP). TP projects spherical content onto
multiple tangent planes placed around the sphere, producing lo-
cally distortion-free patches. This enables the reuse of perspective
vision models but requires precise stitching across patches.
Panini Projection. Panini projection reduces distortions of wide-
angle rectilinear views (> 70°) by preserving vertical and radial
lines while compressing the horizontal field. It provides a smooth
trade-off between central magnification and edge compression.

3 STRUCTURAL CHALLENGES AND STRATEGIES

Although omnidirectional images (ODI) provide full 360° cov-
erage for immersive perception, their structural differences from
perspective images create a domain gap that hinders direct model
transfer. In this section, we analyze three key structural charac-
teristics that distinguish ODIs from perspective images: geometric
distortion, non-uniform spatial sampling, and boundary continuity,
as shown in the right side of Fig. 1. Then, these challenges have
motivated a variety of methodological solutions. As summarized
in Fig. 4(c), we organize existing approaches through a vertical
cross-method analysis into four classes: (1) Distortion-aware,
(2) Projection-driven, (3) Physics- or geometry-based, and (4)
Other designs, including diffusion, behavior modeling, and metric
learning. Among these, the distortion-aware and projection-driven
methods are the most representative and will be summarized in
this section.

3.1 Structural Challenges in ERP-based ODIs

Geometric Distortion. In ERP, unwrapping the sphere onto a
2D plane introduces distortions that increase with latitude and
are most severe near the poles (£90°). As shown in Fig. 1,
objects near the poles appear significantly stretched and warped,
leading to an inaccurate perception of shape and structure. Such
distortion limits the effectiveness of standard convolutional neural
networks (CNNs), whose translation-invariant filters are ill-suited
for spherical geometry. Near the poles, this assumption fails,
resulting in a degraded feature extraction.
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Fig. 4: Overview of representative strategies for mitigating structural challenges and their task-level summary. (a) Distortion-Aware
Methods either leverage distortion maps (top) with three representative utilizations-input concatenation, feature fusion, and loss
weighting, or design distortion-aware architectures (bottom), such as CNNs, Transformers, and diffusion models with adaptive kernels,
attention, or noise initialization. (b) Projection-Driven Methods alleviate ERP distortions by re-projecting panoramas into alternative
views (e.g., cubemap, tangent plane) and fusing multi-projection features. (c¢) Method-Based Summary highlights the task-level
applicability across representative panoramic vision tasks, with distortion-aware and projection-driven methods as two core strategies.

Non-uniform Spatial Sampling. Each horizontal line of the ERP
corresponds to a constant latitude on the sphere, which leads to the
density of pixels to vary across different latitudes. As illustrated
in Fig. 1, regions around the equator have dense and fine-grained
sampling, whereas the poles exhibit sparse sampling. This leads
to significant variation in the pixel-to-surface area ratio across
the image. This is an imbalance that disrupts the scale invariance
of visual models, as objects of the same size appear at different
resolutions depending on their latitude.

Boundary Continuity. In contrast to conventional perspective
images, ODIs inherently preserve boundary continuity. Specifi-
cally, in ERP, the left and right boundaries correspond to adjacent
areas of the sphere, resulting in a seamless horizontal loop. This
property preserves spatial continuity across the image boundaries
on the spherical domain. However, conventional convolutional
neural networks (CNNs), even the position embeddings in the
Transformer structure, originally designed for perspective images,
often treat ERP images as planar and fail to account for this
horizontal continuity. As a result, visual features that span the
spherical seam may be incorrectly treated as disjointed, leading to
suboptimal performance near the horizontal boundaries.

3.2 Method-Aware Comparison

Building on the structural challenges discussed in subsection 3.1,
we further draw a conclusion of current methods to address
the inconsistency between data characteristics and task require-
ments. ODIs suffer from distortion, non-uniform sampling, and
boundary continuity, leading different tasks to emphasize either

global semantic consistency (e.g., segmentation, restoration) or
local geometric precision (e.g., depth, optical flow), which in turn
shapes methodological choices.

As summarized in Fig. 4, existing methodologies can be
classified into four categories. Distortion-aware methods maintain
the ERP format while accounting for distortions. Projection-
driven methods reduce distortion by re-projecting into alternative
views. Physics- and geometry-based methods integrate priors such
as lighting models or spatial layout constraints. Finally, other
designs cover diffusion-based generative approaches, behavior-
aware strategies, and metric-oriented frameworks. Among these,
distortion-aware and projection-driven methods are the two most
widely adopted categories, and the following subsections provide
a detailed analysis of their strengths, weaknesses, and task-level
applicability.

Distortion-Aware Methods retain the unified ERP representation
and embed distortions into the network design, which are shown
in Fig. 4(a). Some works [29]-[36] introduce spatially adaptive
convolution kernels, where their filter shapes or receptive fields
vary with latitude to account for geometric distortion. Some
studies [29]-[36] introduce spatially adaptive designs in CNNs,
Transformers, and diffusion architectures, where convolution ker-
nels, attention windows, or even the initialization of generative
noise are adjusted with latitude to account for geometric distortion
and the non-uniform pixel distribution of panoramic images.
Others [37]-[39] employ distortion maps—precomputed weight
masks indicating the severity of distortion at each pixel—to
guide feature learning in multiple ways. As illustrated in Fig.,



distortion maps can be (®) concatenated with the input panorama
to provide pixel-wise distortion cues, (@) fused with intermediate
feature layers to modulate representation learning adaptively, and
(®) incorporated into the loss function as weighted penalties
to emphasize errors in highly distorted regions. These strategies
collectively compensate for the spatial non-uniformity inherent
in ERP images. Their advantages include: (1) preserving global
pixel-semantic correspondence without slicing or projection loss;
(2) compatibility with CNN/Transformer/diffusion frameworks for
end-to-end training; (3) flexible adaptation via deformable convo-
lutions, re-weighted losses, or distortion maps. Limitations are:
(1) residual polar distortion in ERP leading to degraded accuracy
in high-deformation regions; (2) reduced robustness in geometry-
sensitive tasks (e.g., depth, optical flow, keypoint matching) where
precise local geometry is critical.

Projection-Driven Methods complement ERP with multiple
projections that introduce less distortion, thereby alleviating its
adverse effects, which are shown in Fig. 4(b). Representative
examples include Cubemap Projection (CP), which reduces polar
distortion by splitting the scene into six perspective views, Tan-
gent Projection for locally distortion-free mapping, Polyhedron-
based Projections (e.g., icosahedron), and Spherical Projection
that directly preserves the underlying geometry. Strengths: (1)
effectively suppress distortions, especially at poles and seams;
(2) enable direct reuse of perspective models and large pre-
trained backbones; (3) achieve stronger performance in geometry-
sensitive tasks (e.g., depth, optical flow, NVS); (4) flexibility for
task-specific adaptation, as different projections can be selected
according to the application. Limitations: (1) fragmented informa-
tion across projections, requiring additional fusion mechanisms;
(2) higher computational and memory overhead from multi-view
redundancy; (3) some projections demand bespoke architectures
and training.

Applicability Across Tasks. Task-level analysis shows clear
preferences for the two strategies: (1) Distortion-aware methods
suit tasks demanding global semantic consistency and perceptual
quality, such as super-resolution, restoration, completion, seg-
mentation, and detection. (2) Projection compensation methods
excel in geometry-sensitive domains—depth, optical flow, key-
point matching, novel view synthesis (NVS)—and in multi-modal
fusion (e.g., LiDAR + panorama, mapping, visual odometry),
where alignment with perspective modalities is crucial. (3) Some
tasks admit both strategies depending on application goals. For
example, super-resolution can prioritize global consistency and
perceptual quality (distortion-aware) for video playback or im-
mersive display, or emphasize local geometric fidelity (projec-
tion compensation) for architectural preservation or fine-grained
reconstruction. Similarly, text-to-image/video generation benefits
from distortion-aware designs for holistic semantic alignment,
while projection-based schemes provide finer local control via
perspective fusion. (4) In physics-driven tasks (e.g., reflection
removal, parametric lighting estimation, regression-based layout
detection), projection choice plays a secondary role compared to
physical priors. (5) For underexplored areas (e.g., tracking, pose
estimation, mapping), current evidence is too limited to establish
clear preferences, highlighting directions for future study.

4 PANORAMA TASKS

Recent advances in panoramic vision have catalyzed a wide
range of tasks across perception, understanding, and generation.
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As summarized in Table 5, over 20 representative tasks across
four categories have been explored, ranging from low-level im-
age enhancement to high-level scene understanding, multimodal
fusion, and immersive content generation. This section gives a
comprehensive review of these tasks, conducting a horizontal,
cross-task analysis of the methods proposed to address the unique
gaps introduced by panoramic scenarios.

4.1 Visual Quality Enhancement and Assessment

The real-world images typically suffer quality degradation due to
various disturbances encountered during compression, transmis-
sion, and acquisition processes [335]-[337]. The visual quality
of images significantly affects human perceptual experiences as
well as the performance of subsequent downstream tasks, such
as image segmentation, object detection, and 3D reconstruction.
To address these issues, in addition to the imaging system-based
solutions mentioned in Section 2, image quality enhancement
serves as a post-processing approach after image acquisition. It
aims to restore high-quality, high-fidelity images from degraded
inputs by emphasizing fine details and improving the overall
visual clarity. Concurrently, image quality assessment provides
quantitative evaluations of both degraded and enhanced images
through objective or subjective metrics, guiding the development
and optimization of enhancement methodologies.

In particular, perspective images have witnessed remarkable
progress in quality enhancement and assessment, benefiting from
a range of learning-based techniques. However, panoramic im-
ages exhibit distinctive characteristics compared to perspective
images, such as severe distortions near the poles and uneven
pixel distribution. These features pose substantial barriers to the
direct application of existing perspective-based techniques. There-
fore, this section systematically reviews recent advancements in
panoramic image quality enhancement and assessment, identifying
critical technical trends and highlighting open research challenges
within this emerging field. Since Section 3.2 provides a detailed
analysis of the advantages, limitations, and applicability of the two
common strategies, this section presents only a brief discussion for
the strategies. For task-specific future directions, please refer to the
supplementary material.

4.1.1 Super Resolution

Super-resolution aims to reconstruct a high-resolution image or
video from one or more low-resolution inputs by restoring fine
details and enhancing visual quality. Some early methods [52],
[53] extend the existing perspective-based models [338], [339]
with panorama data. However, their performance is significantly
constrained by model designs that fail to account for the unique
characteristics distinguishing panoramic from perspective ones. To
address these issues, advanced methods can be categorized into
three groups:

Distortion-Aware Methods are designed to address the non-
uniform pixel distribution [40] in ODI-SR by introducing
distortion-aware priors or adaptive weighting schemes that em-
phasize perceptually important equatorial regions. The proposed
methods with hierarchical modeling (LAUNet [40]), distortion-
aware priors (360-SISR [37]), weighted loss designs (OSR-
GAN [41]), distortion-aware convolutions and adaptive losses
(OSRT [29], An et al. [42], Sun et al. [38]), pixel-wise weighting
and distortion-guided attention (FATO [43], GDGT-OSR [44]),
and more advanced transformer-based schemes leveraging ge-
ometric, semantic, and frequency cues (Cao et al. [45], Shen
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Distortion-Aware: LAUNet [40], 360-SISR [37], OSRGAN [41], OSRT [29], An et al. [42], OPDN [38], FATO [43],GDGT-OSR [44], Cao et al. [45]
FAOR [46], MambaOSR [47], SMFN [48], S3PO [49], STDAN [50], FOCAS [51] Traditional: SRCNN_FT [52], OESRGAN [53]

Projection-Driven: SphereSR [54], OmniZoomer [55], BPOSR [56], Cai et al. [57]
Generative Model-Driven: OmniSSR [58], DiffOSR [59], RealOSR [60]
— Hong et al. [61], PAR2Net [62], ZS360 [63], Park et al. [64]
Denoising: Bigot et al. [65], azzi et al. [66], Phan et al. [67], SphereDRUNet [68]
{ Deblurring: Li et al. [69], Peng et al. [70], Liu et al. [71], Alibouch et al. [72]
Dehazing: Zhao et al. [30]

Behavior-Aware: MC360IQA [73], VGCN [74], TVFormer [75], JointNet [76], DeepVR-IQA [77],
Assessor360 [78], ST360IQ [79], VSBNet [31], SCPOIQA [80], CIQNet [81], NR-OVQA [82]

Distortion- and Geometry-Aware: WS-PSNR [83], WS-SSIM [84], S-PSNR [85], OV-PSNR [86], CPBQA [87],
'VSBNet [31], V-CNN [88], MP-BOIQA [89], 360-VQA [90], GAT [91], MFILGN [92], Yang. [93], ASAL [94]

Knowledge Alignment: DensePASS [95], DPPASS [96], Trans4PASS [97], Trans4PASS+ [98], 360SFUDA [99], 360SFUDA++ [100],
Pseudo-Label Generation: Yang et al. [101], GoodSAM [102], GoodSAM++ [103], OmniSAM [104]

Others: PASS [105], DS-PASS [106], DDCNet [32], Zheng et al. [107], DeepPanoContext [108], SGAT4PASS [109], Liu et al. [110] HexRUNet [111]
PRF [112], PanoVOS [113], Pano-SfMLearner [114], OASS [115], OOOPS [116]

— 360Mapper [117], OneBEV [118], HumanoidPano [119]
Distortion-aware: SphereNet [120], SPHCONV [121], Curved-Space Faster R-CNN [122], MS-RPN [123], PDAT [124], PanoGlassNet [125]
{ Projection-Driven: Multi-Projection YOLO [126], Rep R-CNN [127]
Redefining spherical bounding: Unbiased IoU [128], FoV-IoU [129], Sph2Pob [130]
— Jiang et al. [131], MMPAT [132], CC3DT [133], 360VOT [134], 360VOTS [135], Luo et al. [136]
— CoVisPose [137], Graph-CoVis [138], PanoPose [139]
Projection-Driven: SalNet [140], Suzuki et al [141], Dai et al [142], Djemai et al [143], SalGAN360 [144], SalbiNet [145], Dedhia et al. [146]
Spherical GNN-based: SalGCN [147], SalReGCN360 [148], SalGFCN [149], GBCNN [150], 360Spred [151]

Behavior Modeling: Abreu et al. [152], Zhu et al. [153], Bur et al. [154], PanoSalNet [155],
Qiao et al. [156], Cheng et al. [157] DHP [158], ATSal [159], Guo et al. [160], Cokelek et al. [161]

Others: Zhu et al. [162], RANSP [163], [164], Abreu et al. [152], Zhu et al. [153], Bogdanova et al. [165]
Projection-Driven: DuLa-Net [166], PSMNet [167], uLayout [168]
Geometric-Based: HorizonNet [169], DOPNet [170], MV-DOPNet [171], C2P-Net [172], LED2-Net [173], Seg2Reg [174], LGT-Net [175], HoHoNet [176]
Structural-Aware: Fernandez et al. [177], PanoContext [178], GPRNet [179], Bi-Layout [180], Jia et al. [181], SSLayout360 [182], SemiLayout360 [183]
Distortion-Aware: Cubes3D [184], SimpleNet [34], OmniFlowNet [185], LiteFlowNet360 [186], PanoFlow [187], PriOr-Flow [188]

_‘ Projection-Driven: Yuan et al. [189], Li et al. [190]

— SPHORB [191], Chuang et al. [192], PanoPoint [193], SphereGlue [194], EDM [195]

— Li et al. [196], PhyIR [197], Xu et al. [198],

% Physics-Based: Weber et al. [199], Gkitsas et al. [200], Hold et al. [201], [202], Zhang et al. [203], Song et al. [204], Garon et al. [205]

Panorama Generation: EnvMapNet [206], StyleLight [207], IlumiDiff [208], Hilliard et al. [209], EMLight [210], GMLight [211]
Weber et al. [212], EverLight [213], SOLID-Net [214], SALENet [215], CleAR [216]

Distortion-Aware: OmniDepth [217], Tateno et al. [35], ACDNet [36], PanoFormer [218], EGFormer [219], OmniDiffusion [220], HUSH [221]

Projection-Driven: BiFuse [222], UniFuse [223], Peng et al. [224], GLPanoDepth [225], HRDFuse [226]. Ai et al. [227], [228]
OmniFusion [229], 360MonoDepth [230], SphereUFormer [231], S2Net [232], MS360 [233], SGFormer [234], PGFuse [235], OmniStereo [236]

Others: Slicenet [237] HoHoNet [238], PanelNet [239], Huang et al. [240], Pano Popups [241], Feng et al. [242], Zioulis et al. [243], Wang et al. [244]
Yun et al. [245], Spdet [246], Garg et al. [247], Depth Anywhere [248], PanDA [249]

__ Audible Panorama [250], Li et al. [251], Morgado et al. [252], AVS-ODV [253], PAV-SOD [254], PAV-SOR [160]
Pano-AVQA [255], Masuyama et al. [256], Vasudevan et al. [257], OAVQA [258], Fela et al. [259], Sonic4D [260]

— SPOMP [261], HumanoidPano [119], Ma et al. [262], OmniColor [263], Zhao et al. [264], Bernreiter et al. [265], PanoramicVO [266], MMPAT [132]

— VQA-360 [267], VIEW-QA [268], OmniVQA [269], OSR-Bench [270], Dense360 [271]

Distortion-Aware: Text2Light [272], SMGD [273], SphereDiffusion [274], PanoWAN [275], DynamicScaler [276], PanoDiT [277]

Projection-Driven: TanDiT [278], Zhang et al. [279], TiP4AGEN [280], DreamCube [281], SphereDiff [282], VideoPanda [283], ViewPoint [284]

Continuity Modeling: Diffusion360 [285], StitchDiffusion [286], PAR [287], PanoFree [288]

Others: VidPanos [289], OmniDrag [290]

Distortion-Aware: Dream360 [291], PanoDecouple [292], 2S-ODIS [293]

— Continuity Modeling: Cylin-Painting [294], PanoDiff [295], PanoDiffusion [296], Akimoto et al.’s [297]

Others: ImmerseGAN [298], AOG-Net [299], BIPS [300]

NeRF-based: EgoNeRF [301], PanoGRF [302], Omni-NeRF [303], OmniLocalRF [304], 360Roam [305], 360FusionNeRF [306], PERF [307], PanoHDR-NeRF [308]

_| 3DGS-based: 360-GS [309], ODGS [310], PanSplat [311], OmniGS [312], Splatter-360 [313], OmniSplat [314]
TPGS [315], PanoSplatt3R [316], ErpGS [317], Seam360GS [318], OB3D [319]

Lightweight Panoramic View Synthesis: OmniSyn [320], SOMSI [321], Casual 6-DoF [322]
Constrained Scene Generation: SceneDreamer360 [323], DreamScene360 [324], LayerPano3D [325], HoloDreamer [326], HoloTime [327], 4K4DGen [328]
— Unconstrained World Generation: HunyuanWorld 1.0 [329], Matrix-3D [330]

Vision-Language Navigation (VLN): PANOGEN [331], PANOGEN++ [332], VLN-RAM [333], Any20mni [334]

Fig. 5: Summary of Panoramic Vision Tasks and Representative Methods.

et al. [46], Wen et al. [47]). For video SR, works such as
SMEN [48], S3PO [49], and STDAN [50] adopt latitude-aware
losses to emphasize equatorial regions and temporal-aware mod-
ules for spatiotemporal coherence. Central vision-based SR has
also been explored in FOCAS [51], leveraging foveated rendering
to highlight human central vision.

Projection-Driven Methods leverage alternative projections to
reduce ERP distortions, enabling super-resolution models to better
pursue local geometric precision and structural fidelity. Some
works include continuous spherical modeling with spherical CNNs

on icosahedral grids (SphereSR [54]), Mdobius projection with
spatially adaptive resampling for localized high-precision up-
sampling (OmniZoomer [55]), dual-branch geometric alignment
for structural consistency (BPOSR [56]), and pseudo-cylindrical
representations for adaptive latitude sampling compatible with
standard 2D SR networks (Cai et al. [57]).

Generative Model-Driven Approaches leverage the strong priors
of foundation models, particularly diffusion models, to handle
unknown and complex degradations and improve generalization
in ODISR. Some works include ERP-to-TP projection interaction
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Fig. 6: Reflection removal challenges in panoramic images. The reflection scene (R, green) and reflection layer (R;, blue) present
geometric misalignment and photo misalignment, which make transmission-reflection separation more difficult.

with gradient decomposition correction for detail recovery (Om-
niSSR [58]), stepwise sampling to approximate high-resolution
distributions and reduce texture blurring (DiffOSR [59]), and
efficient realistic SR with single-step sampling and unfolding-
guided injector for complex degradations (RealOSR [60]).

Overall, distortion-aware methods emphasize global consis-
tency and perceptual quality, while projection-driven methods
prioritize local geometric fidelity. In contrast, generative model-
driven approaches remain at an early stage; they still suffer from
high computational cost and slow inference.

4.1.2 Reflection Removal.

Reflection removal aims to recover the true transmission scene
from glass-mixed inputs, but traditional perspective-based meth-
ods often fail when applied to panoramic images where reflections
can be sharp and complex, as shown in Fig. 6. Most perspective-
based methods assume the whole image is glass-mixed with weak
and blurred reflections, which often fails in 360 panoramas, mak-
ing transmission—reflection separation particularly challenging.

Recent panorama-based approaches leverage the unique char-
acteristic that both the reflective scene and the mixture image
within the same frame: introducing external priors from visible
reflection sources (Hong et al. [61]), unifying correspondence
modeling, transmission recovery, and reflection refinement in end-
to-end designs (Paeret [62]), extending to zero-shot reflection
removal via iterative geometric matching and disentanglement
(ZS360 [63]), and developing fully automated frameworks with
long-range dependency modeling and multi-scale alignment for
robust performance (Park et al. [64]).

4.1.3 Omnidirectional Image Restoration

Omnidirectional image restoration aims to restore high-quality
360° images from their degraded counterparts, which can include
noise, blur, and weather distortions. Here, we review methods for
main image restoration tasks, including denoising, deblurring, and
dehazing. In the following sections, we will highlight how each
approach leverages the spatial geometry of omnidirectional data
to achieve robust performance.

(1) Image Denoising: Early methods adapt classical filters to
spherical geometry, including Wiener filtering, Tikhonov regular-
ization, and Stein block thresholding [65], [66]; panorama-adapted
designs introduce space-variant total variation to model ERP-
specific distortions [67]; and recent learning-based approaches like
SphereDRUNet leverage uniform HEALPix sampling to perform
data-driven restoration directly on the sphere [68].

(2) Image deblurring: Only some traditional methods are proposed
for omnidirectional images, adapting classical strategies to ad-
dress geometric and optical challenges. Some approaches include
projection-based priors such as Omnigradient, which incorpo-
rates cylindrical gradient regularization into deconvolution [69];
hardware-based solutions like coded apertures to capture all-focus

information and mitigate defocus blur [70], [71]; and spherical-
domain filtering methods such as harmonic-based Wiener filtering
on the 2-sphere [72].

(3) Image dehazing: To address panoramic dehazing, Zhao et
al. [30] propose a distortion-aware convolution to handle ERP-
induced distortion. Their end-to-end framework jointly performs
dehazing and depth estimation, establishing a strong baseline for
adverse-weather restoration in omnidirectional scenes.

4.1.4 Visual Quality Assessment.

Visual Quality Assessment aims to quantitatively evaluate the
perceptual quality of panoramic images and videos. Based on
whether reference data are used as constraints, these methods can
be categorized into full reference (FR) and no-reference (NR) ap-
proaches. Unlike conventional IQA and VQA, which often assume
uniform visibility and regress a single global score, panoramic
quality assessment faces unique challenges arising from ERP
distortions near the poles and from user-dependent viewports that
expose only localized regions at a time. To address these issues,
two representative strategies have recently emerged.
Behavior-Aware Methods aim to reflect human subjective per-
ception by simulating localized viewing on head-mounted displays
and integrating behavioral cues such as eye movement, head
movement, and saliency. Some works include shared CNNs and
graph reasoning for inter-viewport relationships (MC360IQA [73],
VGCN [74]); sequence models for temporal scanning and
memory effects (TVFormer [75], JointNet [76]); behavioral
priors such as viewing coordinates, adversarial learning, and
trajectory/saliency-guided weighting (DeepVR-IQA [77], Asses-
sor360 [78], ST360IQ [79]). Recently, fidelity-enhanced designs
have been proposed to align distorted content with pseudo-
references or to fuse predicted saliency into score aggregation
(VSBNet [31], SCPIQA [80]). For VQA, perceptual- and causal-
aware models for robust quality estimation (CIQNet [81], NR-
OVQA [82]). While effective under uniformly distributed distor-
tions, these methods still struggle to handle the spatially complex
and uneven distortion patterns.

Distortion- and Geometry-Aware Methods explicitly address
spatial non-uniformity and geometric distortions through latitude-
aware designings (WS-PSNR [83], WS-SSIM [84], S-PSNR [85],
OV-PSNR [86]); saliency- and viewport-weighted assessment with
equidistant convolutions for perceptual fidelity (CPBQA [87],
VSBNet [31], V-CNN [88]); multi-projection and statistical
or dynamic modeling for distortion distribution fitting (MP-
BOIQA [89], 360-VQA [90]); hierarchical graph attention mod-
ule (GAT [91]), weakly supervised frequency domain evaluation
via wavelet decomposition and NSS statistics (MFILGN [92]);
and large-scale benchmarks with BLIP-2-based modeling to
jointly predict perceptual quality and degraded regions for AIGC
content (Yang et al. [93]), and continual learning approaches
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Fig. 7: UDA strategies for panoramic segmentation. (a) Knowledge Alignment: enforces semantic consistency via adversarial learning
and prototypical adaptation. (b) Pseudo-Label Generation: derives supervision from ensemble predictions, SAM-based rectification,

and fine-tuning with FoV-aware prototypes and dynamic labeling.

tackling cross-dataset generalization and catastrophic forgetting
(ASAL [94]).

4.2 Visual Understanding

Panoramic visual understanding tasks encompass a wide range
of objectives, including high-level semantic interpretation and
geometry-centric structural perception. To provide a clear task
definition and methodological developments, we categorize ex-
isting tasks into two groups: (1) Semantic-Level (e.g., object seg-
mentation, detection, saliency prediction, visual tracking), which
emphasize region- or pixel-level recognition based on semantic
priors; and (2) Structure and Motion-Oriented (e.g., layout,
optical flow, pose, lighting, and keypoint estimation), which focus
on 3D structure, spatial layout, motion, and illumination. Unlike
low-level enhancement, these tasks require higher-level percep-
tion, where spatial consistency, geometric invariance, and semantic
awareness are critical. However, panoramic distortions and view-
dependent semantics pose fundamental challenges that drive the
need for specialized representations and learning strategies.

4.2.1

Object segmentation aims to segment key regions in an image
by assigning category labels and, in some cases, instance iden-
tities to each pixel. While perspective segmentation [340] has
achieved remarkable progress with large-scale datasets and deep
neural networks, panoramic images represented in ERP format
introduce new challenges due to polar distortions and violations
of planar assumptions. Early methods project ERP images into
multiple perspective-like patches and segment them individually
before fusion (PASS [105], DS-PASS [106]), which suffers from
loss of global context, boundary inconsistencies, and redundant
computation. To overcome these limitations and reduce reliance
on scarce panoramic annotations, recent studies have explored
Unsupervised Domain Adaptation (UDA) to transfer knowledge
from perspective to panorama. Existing approaches are broadly
categorized into two groups, as shown in Fig. 7.

Knowledge Alignment focuses on transferring semantic consis-
tency from the source perspective domain to the target panoramic
domain, through explicit or implicit alignment mechanisms. Ex-
plicit strategies enforce domain invariance via adversarial learning,
focusing on global-local consistency (DensePASS [95]) or align-
ing ERP and perspective branches for cross-domain generaliza-
tion (DPPASS [96]). Implicit strategies adopt prototypical adap-
tation, such as self-supervised Mutual Prototypical Adaptation

Object Segmentation

(Trans4PASS [97]) and Segment Anything Model (SAM) [341]
enhanced prototype correction for supervision (Trans4PASS+
[98]). To further mitigate projection distortion and style incon-
sistencies, multi-projection fusion approaches (360SFUDA [99],
360SFUDA++ [100]) integrate ERP, FFP, and TP views for multi-
level alignment of predictions, prototypes, and features, effectively
bridging semantic, geometric, and stylistic gaps.

Pseudo-Label Generation produces supervision signals for unla-
beled panoramic images by using pretrained models from other
domains. Early approaches generate multiple predictions from
transformed panoramic inputs and ensemble them into pseudo-
labels (Yang et al. [101]); SAM-based methods leverage zero-shot
masks refined with Teacher Assistant guidance and distortion-
aware rectification for improved accuracy at lower cost (Good-
SAM [102], GoodSAM++ [103]); and recent advances fine-
tune SAM2 [342] with LoRA layers, introducing FoV-based
prototypical adaptation and dynamic pseudo-labeling to handle
distortion, incompleteness, and domain gaps (OmniSAM [104]).
Overall, leveraging the strong generalization ability of large pre-
trained models provides a promising paradigm for more reliable
panoramic segmentation under limited supervision.

Others. There are also some more specialized designs: distortion
convolution [32], bi-directional learning module [107], multi-
task learning [108], spherical deformable embedding [109], dual-
branch designing [110], and unfolded icosahedron mesh [111]. In
addition, with the development of perspective segmentation, new
tasks like panoramic panoptic segmentation [112], video segmen-
tation [113], self-supervised segmentation [114], occlusion-aware
seamless segmentation [115], and open-vocabulary panoramic
segmentation [116] have also been proposed.

4.2.2 Semantic Mapping

Semantic mapping converts egocentric panoramic inputs into
bird’s-eye view (BEV) representations, emphasizing spatial
localization of objects rather than pixel-level segmentation.
Recent works include introducing intermediate projections
and distortion-aware indexing (360Mapper [117]); deployment-
oriented designs learn direct ERP-to-BEV mappings for effi-
ciency (OneBEV [118]); and fusion-based approaches extend
to panoramic-LiDAR integration to mitigate occlusion and FoV
limitations in robotics (HumanoidPano [119]).

4.2.3 Object Detection

Object detection locates and classifies object instances by pre-
dicting bounding boxes and class scores. Unlike semantic seg-
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(c) Comprehensive Comparison between Different Criteria

Metrics Sph-loU Fov-loU Unbiased Sph2Pob
Consistency 1 Rait/ Riow/ Rpign 0.7819/0.9922 / 0.4274  0.9600 / 0.9974 / 0.8860 1.00/1.00 / 1.00 0.9989 / 0.9990 / 0.9988
Time-cost | Veand/ Ve 0.0364 / 0.0033 0.0372 /0.0034 464417 / - 2.2275 / 0.0096
Detection 1 AP / APsy/ AP 107 /243/78 10.9/250/7.9 -/-1/- 11.5/257/82

Fig. 8: Bounding box representations and evaluation criteria for panoramic object detection. (a) Field of view (FoV) bounding boxes
and (b) planar bounding boxes. (c) Metric comparison in consistency, computational cost, and detection accuracy.

mentation, detection in panoramas faces unique challenges, as
conventional rectangular boxes fail to represent object shapes and
positions under ERP distortions, particularly near the poles, as
illustrated in Fig. 8(a)(b). To address this, panoramic detection
adopts spherical bounding boxes, angular bounding boxes, or
polygon/mask-based annotations that better align with object ge-
ometry on the panoramic images. Existing methods can be broadly
categorized into three types.

Distortion-Aware Methods explicitly embed spherical priors
into the detection model. Approaches include spherical con-
volutions that define operations on tangent planes or repa-
rameterized kernels to preserve consistency (SphereNet [120],
SPHCONV [121]), distortion-aware augmentations with multi-
scale kernels or lightweight modules (Curved-Space Faster R-
CNN [122], MS-RPN [123]), and task-specific adaptations such
as dynamic token partitioning or deformable context modules
(PDAT [124], PanoGlassNet [125]).

Projection-Driven Methods mitigate spherical distortion by de-
composing panoramas into multiple distortion-free perspective
views, enabling reuse of conventional 2D detectors. Some works,
such as Multi-Projection YOLO [126] and Rep R-CNN [127]
refine detection through bounding box adjustment, soft selection,
and reprojection-based Rol alignment.

Overall, the above two strategies achieve end-to-end

panoramic detection through architectural design, but they over-
look the proper representation of spherical bounding boxes, which
is a fundamental distinction of panoramic detection.
Redefining Spherical Bounding Boxes and IoU Metrics builds
unbiased spherical representations to better capture object ge-
ometry in panoramas. Some metrics directly model overlap on
the sphere via spherical rectangles or great-circle angles (Sph-
IoU [343], FoV-IoU [129], and Unbiased IoU [128]), elimi-
nating the approximation errors of planar IoU. As shown in
Fig. 8(c), these spherical metrics achieve higher consistency and
more faithful evaluation but often come with increased compu-
tational cost. In contrast, transformation-based approaches such
as Sph2Pob [130] map spherical boxes to rotated planar ones,
reducing complexity and offering competitive accuracy, though
with limited geometric fidelity.

4.2.4 Visual Tracking

Visual tracking aims to track the spatial positions and states of
objects in video sequences. The unique panoramic characteristics
from spherical projection lead to structural degradation when
directly applying perspective-based algorithms, making it diffi-
cult to build consistent spatiotemporal continuity. Early efforts

enhance object continuity with hardware-driven active vision sys-
tems [131]. Cross-modal approaches integrate panoramic images
with LiDAR point cloud for geometry-aware detection, associa-
tion, and bipartite matching (MMPAT [132]). Multi-camera set-
tings are also extended to panoramic space through pre-fused 3D
detections for consistent identity assignment (CC3DT [133]). To
mitigate distortion and boundary issues, spherical representations
and metrics such as BFoV, eBFoV, and Sdual are designed to sup-
port new 360° benchmarks [134], [135]. Recent frameworks unify
tracking-by-detection and end-to-end paradigms under panoramic
designs, enhancing association and representation with trajectory
feedback and segmentation cues (Luo et al. [136]).

4.2.5 Pose Estimation

Pose estimation aims to estimate the 6-DoF transformation be-
tween images. While geometry-based feature matching methods
(e.g., SIFT, ORB) have been widely applied in perspective tasks
like SLAM and SfM, panoramic images suffer performance drops
in feature detection, matching, and modeling due to their unique
characteristics distinct from perspective images. Recent solutions
explore different paradigms: co-visibility-based approaches en-
hance matching and extend pairwise estimation to multi-view
optimization (CoVisPose [137], Graph-CoVis [138]), while self-
supervised strategies leverage photometric losses and rotation-
only pretraining to handle large viewpoint differences without
ground truth poses (PanoPose [139]).

4.2.6 Saliency Prediction

Saliency prediction aims to simulate the distribution of human
visual attention under spherical viewing conditions. Early tradi-
tional methods [154], [165] rely on low-level features such as
intensity, color opponency, and corner responses. With the success
of learning-based saliency models on perspective images, trans-
ferring them to omnidirectional scenarios remains challenging due
to ERP distortions, the scarcity of large-scale 360° benchmarks,
and optimization difficulties. Existing approaches can be broadly
categorized into three types:

Projection-Driven Methods directly project panoramas into
Cubemap Projections (CP). Some early works [140]-[143]
adapted conventional 2D saliency models under this paradigm
and fused the cubemap-based results into the original panoramas.
These methods effectively avoid ERP-specific distortions with
well-trained perspective networks, but fail to bridge the feature-
level gap. Subsequent research noticed this challenge and pro-
posed methods with integration of both ERP-based global features
and CP-based local features. These approaches [144]-[146] typi-
cally employ dual-branch networks or separated pipelines, where



predictions from ERP and CP are fused via weighted averaging or
spherical-domain optimization.

Spherical Graph Neural Network-based Methods build graph
structures directly on the sphere and apply graph convolutional
networks (GCNs) to preserve geometric continuity and spatial
adjacency without relying on specific projections [147]-[150].
They typically sample uniformly on the spherical surface (e.g.,
geodesic grids or superpixels), where saliency reasoning is per-
formed by propagating features across nodes in geodesic space.
360Spred [151] further incorporates spherical optical flow and 3D
separable graph convolution to jointly capture spatial-temporal
saliency patterns.

Behavior Modeling Methods integrate viewing priors such as
equator bias, head—eye motion, or scanpaths, often guided by eye-
tracking or viewport trajectories [152], [153]. For video, behavior-
aware approaches further incorporate head-movement prediction,
FoV dynamics, and viewport biases via sequence models or multi-
task learning [155], [156], leverage cube-based spatial-temporal
designs for geometric continuity [157], simulate scanpaths with
reinforcement learning [158], or fuse global-local cues in dual-
stream architectures [159]. More recent multimodal frameworks
align audio—visual attention for fine-grained saliency [160], [161].
Others. These approaches operate directly on ERP images and
introduce novel modules such as attention mechanisms, spherical-
specific strategy. Lightweight solutions improve efficiency and
discriminative ability through mobile backbones [162], dynamic
convolutions, or ranking-based attention [163], [164]; spherical
U-Net [33] defines convolution kernels on spherical crowns to
preserve geometric fidelity.

4.2.7 Layout Detection

Layout detection aims to recover the structural boundaries of in-
door scenes, including walls, floors, and ceilings from panoramic
images. However, severe geometric distortions violate traditional
assumptions such as planarity and linearity. To address this,
existing methods can be broadly categorized into three types:
Projection-Driven Methods align perspective and panoramic
views within a unified spatial framework, reducing inconsisten-
cies across representations. Some approaches include transferring
features via dual-branch transformation (DuLa-Net [166]), inte-
grating cross-view projection with a stereo transformer (PSM-
Net [167]), and converting perspective inputs into ERP for unified
processing (uLayout [168]).

Geometric-Based Methods adapt to panoramic geometry by
converting 2D layouts into 1D horizon sequences for efficiency
(HorizonNet [169]) and decoupling modeling along orthogo-
nal planes to resolve spatial ambiguities (DOPNet [170], MV-
DOPNet [171]). Building on this principle, C2P-Net [172] models
components along principal axes and compresses them into 1D
representations to enhance spatial reasoning without perspective
priors. Differentiable geometric modules further bridge layout and
depth (LED?-Net [173], Seg2Reg [174]), while distortion-aware
encodings improve spatial consistency (LGT-Net [175]). Unified
frameworks like HoHoNet [176] combine sparse 1D and dense 2D
predictions in a shared latent space, facilitating multi-task transfer
across layout, depth, and semantics.

Structural-Aware Methods improve the robustness and gener-
alization by integrating geometric priors, ambiguity modeling,
and data-efficient strategies. Early works adopt classical cues
such as lines and vanishing points [177], [178], while GPR-
Net [179] leverages learned geometric tokens and multi-view
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correspondences for layout registration and pose regression. To
address annotation ambiguity in existing datasets, dual-branch
frameworks like Bi-Layout [180] jointly predict closed and open
layout types with cross-attentive refinement. Beyond Manhattan-
world assumptions, normal-aware pipelines [181] adaptively re-
construct 3D structures under mixed constraints. Meanwhile, data-
efficient methods further reduce labeling demands through semi-
supervised learning [182] or structure-aware perturbations [183],
enabling layout estimation in low-resource scenarios.

4.2.8 Optical Flow Estimation

Optical flow estimation aims to compute dense motion fields
between panoramic video frames. Conventional assumptions such
as brightness constancy and spatial smoothness often fail under
severe panoramic distortions. Early work like Cubes3D [184]
adapts deep optical flow models with custom projection models
and synthetic data, highlighting domain gaps between perspective
and panoramic settings. Recent methods can be broadly divided
into two categories.

Distortion-Aware Methods adapt convolutional operations to
accommodate the geometric distortions for more accurate pixel-
wise motion estimation. The proposed methods with deformable
convolutions (SimpleNet [34]), distortion-aware kernels aligned
with spherical geometry (OmniFlowNet [185]), angular-aware
kernels (LiteFlowNet360 [186]), flow-specific augmentations with
cyclic estimation (PanoFlow [187]), and ortho-driven distortion
compensation (PriOr-Flow [188]).

Projection-Driven Methods integrate motion fields from multiple
projection domains. The proposed methods utilize a gnomonic-
based cubemap and icosahedron fusion, employing off-the-shelf
models (Yuan et al. [189]), and a joint learning approach for
equirectangular, cylindrical, and cubemap flows through a fusion
network (Li et al. [190]).

4.2.9 Keypoint Matching.

Keypoint matching aims to extract repeatable keypoints, com-
pute descriptors on the sphere, and establish correspondences
invariant to spherical rotations and robust to ERP distortions.
Traditional methods mitigate distortions by locally approximating
the sphere as planar, e.g., SPHORB [191] uses geodesic grids
for uniform sampling, and Chuang et al. [192] project local
patches onto tangent planes for description. Learning-based ap-
proaches embed spherical geometry into models, such as Pano-
Point [193], which performs detection/description on ERP images,
and SphereGlue [194], which leverages spherical graphs with
Chebyshev convolutions. More recently, EDM [195] introduces
a spherical spatial alignment module with geodesic refinement,
enabling coherent yet locally precise dense correspondences.

4.2.10 Decomposition

Decomposition separates 360° imagery into interpretable compo-
nents such as lighting, reflectance, and geometry, enabling realistic
understanding and content editing in immersive settings. The
proposed methods with stereo-based full-scene illumination and
multi-scale learning (Li et al. [196]), physics-driven decompo-
sition via differentiable rendering (PhyIR [197]), and spherical-
constrained optimization with intrinsic priors (Xu et al. [198]).

4.2.11 Lighting Estimation

Lighting estimation aims to recover high-fidelity environmental il-
lumination, supporting tasks such as inverse rendering, relighting,



object insertion, and augmented reality. The goal is typically to
create an HDR environment map or a set of spherical harmonics
(SH) coefficients that capture the global scene illumination. Early
approaches directly infer illumination from full 360° panora-
mas [199], [200], but collecting large-scale panoramic data is
impractical. Recent studies instead estimate lighting from limited
observations, such as perspective images or object-centric RGB-D
views, and can be broadly categorized into two main directions.
Physics-Based Methods directly regresses compact parameter
sets such as sun position, sky turbidity, or SH coefficients, using
physically based sky models, autoencoder-learned codes, or CNN
predictors. Outdoor-oriented approaches target natural illumina-
tion [201]-[203], while others address complex indoor lighting
with spatial variations [204], [205]. Geometry and reflectance pri-
ors, often combined with differentiable rendering layers, provide
supervision and support photorealistic relighting.

Panorama Generation Methods predict full 360° environment
maps as an intermediate or final lighting representation, pro-
viding more realistic relighting and greater editing flexibility
than parameter-only regression. Generative approaches reconstruct
HDR panoramas from partial observations using GANs or diffu-
sion models (StyleLight [207], HDRGAN [206], [IlumiDiff [208],
Hilliard et al. [209]); physically inspired methods integrate ge-
ometric parameterizations or scene cues with editable HDR il-
lumination (EMLight [210], GMLight [211], Weber et al. [212],
EverLight [213]); and structured pipelines adopt intrinsic decom-
position, hierarchical transformers, or latent-diffusion refinement
(SOLID-Net [214], SALENet [215], CleAR [216]). Collectively,
these strategies enhance realism, editability, and consistency in
panoramic lighting estimation.

4.2.12 Depth Estimation

Depth estimation aims to infer per-pixel scene distances (or dispar-
ities) from images, producing dense 3D structural representations.
In panoramas, spherical geometry and severe ERP distortions
make this task more challenging than in perspective settings. The
first learning-based approach, OmniDepth [217], attempts to ad-
dress this perspective-to-panorama gap by introducing a dedicated
dataset and a distortion-aware network, subsequent methods can
be broadly categorized into four paradigms.

Distortion-Aware Methods for depth estimation include
distortion-aware convolutions that adapt kernel sampling to
non-uniform resolution (Tateno et al. [35], ACDNet [36]),
Transformer-based architectures with spherical encodings or atten-
tion (PanoFormer [218], EGFormer [219]), diffusion frameworks
modeling global structure probabilistically (OmniDiffusion [220]),
and harmonic-space representations capturing frequency-domain
topology (HuSH [221]).

Projection-Driven Methods for depth estimation include:

(a) Multi-Projection Fusion. Some works include BiFuse [222]
and UniFuse [223] with dual-branch ERP—cubemap fusion via
learnable masks and distortion-aware padding, perspective-view
synthesis for local refinement [224], cubemap vision transform-
ers [225], and feature-alignment modules [226]. More advanced
designs such as Elite360D/M [227], [228] integrate ERP and
spherical grids (e.g., ICOSAP) with attention mechanisms and
multi-task objectives for improved efficiency and generalization.
(b) Projection Transformation. Instead of fusing views, these
methods directly replace ERP with distortion-reduced projec-
tions. Tangent patches [229], [230], icosahedral meshes [231],
and HEALPix-sampled spheres [232] enable uniform spatial
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reasoning and accurate depth regression. Further improvements
include patch-wise fusion with geometry-aware modules [229],
[233], spherical transformers [234], frequency-domain designs
such as Gabor-based priors [235], and Cassini-based omnidirec-
tional stereo [236] for geometry-preserving multi-view depth.
Other Methods. Beyond structure-aware modeling and
projection-based strategies, several complementary directions fur-
ther advance panoramic depth estimation. Slice-based represen-
tations partition ERP into gravity-aligned slices or panels to
exploit indoor regularities (SliceNet [237], HoHoNet [238], Panel-
Net [239]); multi-task learning jointly predicts depth with normals
or planar boundaries to enforce geometric consistency (Huang et
al. [240], Eder et al. [241], Feng et al. [242]); self- and weakly
supervised methods leverage spherical view synthesis or stereo
photometric cues for scalable training on unlabeled panoramas
[243]-[247]; and pretraining/foundation adaptation transfers large
perspective-based models (e.g., Depth Anything) to panoramas
via projection conversion, pseudo-label distillation, and Mobius
or equator-aware augmentations [248], [249].

4.3 Multi-modal Understanding

These works extend panoramic perception beyond vision-only
models by integrating complementary modalities such as audio,
LiDAR, and text. With the growing adoption of 360° images and
videos in VR/AR, this fusion enables richer semantic understand-
ing and human-aligned multimodal perception and generation.

4.3.1 Audio—Visual Fusion

These methods leverage spatial audio to complement panoramic
vision with orientation cues and event-specific signals, enabling
richer 360° scene understanding beyond vision alone. Unlike
perspective settings, panoramic scenarios require spatialized audio
over the full sphere with continuity and distortion handling. Recent
research spans four representative directions.

(a) Spatial Audio Synthesis. Methods generate ambisonic sound
aligned with panoramas from static or mono inputs, using depth
cues, geometric simulation, or end-to-end audio—visual networks
(Audible Panorama [250], Li et al. [251], Morgado et al. [252]).
(b) Audio—Visual Attention Modeling. Large-scale eye-tracking
datasets and cross-modal saliency frameworks demonstrate how
spatial audio guides visual focus under ERP and cubemap projec-
tions (AVS-ODV [253], PAV-SOD [254], PAV-SOR [160]).

(c) Semantic Reasoning and Sound Source Localization.
Panoramic tasks require spherical encodings and long-range rea-
soning for object-level auditory understanding, with methods
addressing AVQA, localization, and semantic prediction via spa-
tial encodings, self-supervision, or multi-task learning (Pano-
AVQA [255], Masuyama [256], Vasudevan et al. [257]).

(d) Perceptual Quality and 4D Fusion. Audio-aware models
outperform vision-only baselines in panoramic quality assess-
ment [258], [259], while Sonic4D [260] integrates video-to-audio
generation, grounding, and room simulation for realistic 4D inter-
active experiences.

4.3.2 Fusion Perception with LiDAR

These approaches integrate panoramic imagery with sparse Li-
DAR to enhance robustness in driving, robotics, and mapping. Un-
like perspective fusion [9], [344] with narrow FoV and rectilinear
geometry, panoramic settings require spherical modeling and full-
scene alignment. Recent methods explore semantic mapping and
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Fig. 9: Overview of a panoramic world modeling pipeline, which integrates text-guided generation, image completion, and novel
view synthesis. These stages also correspond to three representative tasks, demonstrating how generative methods collectively advance

holistic scene modeling.

planning with panoramic depth cues (SPOMP [261], Humanoid-
Pano [119]), indoor reconstruction with fisheye—LiDAR fusion or
color-consistent point clouds (Ma et al. [262], OmniColor [263]),
cross-modal saliency and viewpoint-robust localization via spheri-
cal attention or equivariant networks (Zhao et al. [264], Bernreiter
et al. [265]), and trajectory estimation or tracking with LiDAR-
enhanced optimization (PanoramicVO [266], MMPAT [132]).

4.3.3 Fusion with Text

Extending vision-language fusion from perspective images to
360° panoramas introduces unique gaps: spherical projections
cause severe distortions and wraparound boundaries, while se-
mantics are scattered across the full sphere, making conventional
attention and alignment ineffective. Recent methods introduce
spatially-aware attention, guided FoV exploration, and spheri-
cal encodings to enable effective VQA, captioning, and dense
grounding in panoramic contexts, highlighting the importance
of geometry-aware fusion for robust panoramic vision—language
understanding.

VQA-360 [267] pioneers the task with an observe-then-answer
strategy and the first panoramic VQA dataset. VIEW-QA [268]
extends this to 360° videos with annotations for assistive scenar-
ios. OmniVQA [269] and OSR-Bench [270] further emphasize
spatial reasoning and multimodal grounding, evaluating MLLMs
via structured policy learning and cognitive map—based proto-
cols. Most recently, Dense360 [271] introduces dense captioning
and grounding for ERP images using an ERP-RoPE encoding
and large-scale datasets, enabling spatially consistent language
grounding in panoramic contexts.

4.4 Generative-modeling-based Tasks

With the rising interest in world models, an emerging approach
leverages the inherent geometric consistency of panoramas as
a foundation for generation. Recent advances such as Matrix-
3D [330] and HunyuanWorld 1.0 [329] exemplify this trend, push-
ing panoramic generation beyond single-scene synthesis toward
omnidirectional, explorable 3D worlds. Within this paradigm, as
illustrated in Fig. 9, text-guided generation introduces semantic
controllability through multimodal conditioning, image comple-
tion recovers unobserved content in missing or outpainted regions,
and novel view synthesis extends NeRF and 3DGS frameworks to
panoramic settings, enabling faithful viewpoint expansion under
spherical geometry. Together, these components drive the develop-
ment of world modeling, shifting 360° vision from reconstruction

of observations into the generative construction of rich, interactive,
and semantically grounded virtual worlds.

4.4.1

Text-guided generation aims to synthesize panoramic images or
videos from textual descriptions, providing semantic controllabil-
ity for 360° content creation. Diffusion models have driven sub-
stantial advances in text-to-image/video (T21/V) synthesis for per-
spective images and videos, enabling high-quality and controllable
generation [345], [346]. Extending these models to 360° panora-
mas is nontrivial due to spherical topology, which induces geo-
metric distortion and discontinuities across boundaries. Geometry-
aware generation is therefore essential, with clear benefits for
downstream tasks requiring precise spatial understanding. Early
attempts like Text2Light [272] remain widely used benchmarks
but do not explicitly enforce spherical consistency or address
panorama-specific structural and semantic issues, and thus serve
as transitional rather than definitive solutions to the domain gap.
Distortion-Aware Methods explicitly adapt architectures to
spherical geometry and ERP distortions for panoramic gen-
eration. Representative designs include spherical convolutions
(SMConv, SMGD [273]) and SphereDiffusion [274] for native
spherical modeling, pixel-wise reweighting (PanoWAN [275])
and projection-specific denoising (DynamicScaler [276]) for
distortion-aware optimization, as well as transformer backbones
with spherical encodings (PanoDiT [277]) to capture long-range
dependencies while preserving geometric fidelity.
Projection-Driven Methods for panoramic generation include
tangent-plane decomposition (TanDiT [278]), dual-branch archi-
tectures that combine perspective and panoramic contexts (Zhang
et al. [279], TiP4GEN [280]), RGB-Depth cube diffusion
framework (DreamCube [281]), and hybrid spherical-planar mod-
eling (SphereDiff [282]). Other approaches build features from
overlapping perspective views or predefined tangent directions
(VideoPanda [283], ViewPoint [284]), achieving localized con-
sistency while maintaining global coherence.

Continuity Modeling Methods enhances wraparound continu-
ity in 360° panoramas through inference-time strategies without
altering base architectures. Training-free approaches include cir-
cular blending (Diffusion360 [285]), dual pre-denoising at bor-
ders (Wang et al. [286]), circular padding (Wang et al. [287],
360DVD [347]), and iterative warping with bidirectional guidance
(PanoFree [288]), among which PanoFree stands out as a plug-
and-play solution balancing efficiency and compatibility.

Text-guided Generation



Other Methods explore complementary directions such as
coarse-to-fine temporal modules for panoramic video genera-
tion (VidPanos [289]) and user-controllable approaches like Om-
niDrag [290], which explicitly model spherical motion and enable
trajectory-based editing through temporally aware architectures
and motion-diverse datasets.

4.4.2 Image Completion

Image completion, including both inpainting (filling missing
regions) and outpainting (extending beyond boundaries), has
achieved notable success in perspective images using autoen-
coders, GANs, and diffusion models. However, extending to
panoramas remains challenging due to ERP-induced distortions
around poles and seams, the difficulty of generating plausible
content in large missing regions, and poor handling of edge-
and pole-specific structures such as sky, ground, and stitching
artifacts. To address these issues, recent research explores two
main directions.

Distortion-Aware Methods for 360° completion include
Dream360 [291], which builds spherical latent spaces to reduce
planar bias; PanoDecouple [292], which separates distortion guid-
ance and content completion with distortion maps and Distort-
CLIP loss; and 2S-ODIS [293], which employs a two-stage
VQGAN + NFoV refinement pipeline to balance global layout and
local detail. Together, these methods improve structural alignment
and perceptual fidelity in panoramic completion.

Continuity Modeling Methods enforce circular consistency
in panoramic completion. Cylin-Painting [294] preserves circu-
lar continuity with cylinder-style convolutions, PanoDiff [295]
and PanoDiffusion [296] achieve rotation equivariance and
wraparound consistency with distortion—content decoupling and
RGB-D cues, while Akimoto et al. [297] enhance texture fidelity
and semantic continuity through a dual-network design with circu-
lar inference. Collectively, these methods highlight the importance
of explicitly modeling boundary continuity to achieve seamless
panoramic completion.

Other Methods explore complementary directions beyond dis-
tortion correction and continuity modeling, including semantic
conditioning (ImmerseGAN [298]), multi-modal autoregressive
generation with NFoV, text, and geometry cues (AOG-Net [299]),
and structure-aware RGB-D disentanglement with new evaluation
metrics (BIPS [300]).

4.4.3 Novel View Synthesis

Novel View Synthesis (NVS) for 360° panoramas aims to generate
unseen viewpoints from limited observations. While perspective-
based methods such as NeRF [348] and 3D Gaussian Splatting
(3DGS) [349] have achieved remarkable progress, directly extend-
ing them to panoramic faces faces challenges including spherical
distortions, wide-FoV occlusions, and inefficiencies in Cartesian
sampling. Recent approaches address these issues by incorporating
spherical representations, depth priors, and soft occlusion han-
dling into NeRF/3DGS frameworks, and further explore hybrid
architectures and AIGC-driven pipelines for efficient, semantically
consistent panoramic scene generation.

NeRF-based Methods adapt neural radiance fields to 360°
panoramas by addressing spherical distortion, wide-baseline oc-
clusions, and inefficient Cartesian sampling. Early efforts reformu-
late ray sampling and feature aggregation in spherical coordinates
to improve efficiency and geometric consistency (EgoNeRF [301],
PanoGRF [302]); later studies introduce novel camera models
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(OmniNeRF [303]), local radiance field partitioning (OmniLo-
calRF [304], 360Roam [305]), and semantic or depth priors
for sparse-view or monocular inputs (360FusionNeRF [306],
Perf [307]) to enhance scene understanding from sparse or monoc-
ular inputs. while latest studies incorporate HDR estimation [308]
or inpainting-based augmentation to mitigate data scarcity.
3DGS-based Methods extend 3D Gaussian Splatting to
panoramic view synthesis by addressing projection mismatch,
sparse inputs, and ERP distortion through geometry-aware pro-
jection, sampling, and rasterization. To align with spherical ge-
ometry, differentiable splatting on tangent planes or Fibonacci
lattices reduces pole distortion and improves ERP rendering
(360-GS [309], ODGS [310], PanSplat [311]); OmniGS [312]
replaces cubemap approximations with differentiable projection
models for stronger generalization. Dual-projection encoders and
Yin—Yang decompositions enhance Gaussian parameter predic-
tion (Splatter-360 [313], OmniSplat [314]), while layout pri-
ors, boundary optimization, hierarchical cost volumes, RoPE
rolling, and distortion-aware losses, dual-Fisheye distortion mod-
eling improve robustness in sparse or low-texture indoor scenes
(360-GS [309], TPGS [315], PanoSplatt3R [316], ErpGS [317],
Seam360GS [318]). Finally, OB3D [319] introduces a high-
fidelity omnidirectional dataset with diverse trajectories, enabling
rigorous benchmarking and advancing panoramic 3DGS research.
Other Representations move beyond volumetric NeRFs and
point-based 3DGS by adopting layered images (MSI/LDI) or
spherical meshes for geometry-aware warping and differentiable
compositing. Specifically, SOMSI [321] follows the layered-image
paradigm with a soft-occlusion MSI, achieving high quality with
few layers and fast feedforward synthesis. OmniSyn [320] follows
the spherical-mesh paradigm by pairing 360° depth and a spherical
cost volume with a differentiable 360° mesh renderer to handle
wide baselines and occlusions. Similarly, Casual 6-DoF [322]
enhances the spherical-mesh approach by integrating panoramic
depths into a lightweight mesh, allowing for real-time, VR-ready
6-DoF navigation from casually captured panoramas.

4.4.4 Applications.

Applications of panoramic generative models build on the spa-
tial consistency and completeness of 360° vision, extending
text-driven control to diverse modalities and downstream tasks.
Representative directions include constrained scene generation
for bounded single-scene synthesis, unconstrained world gen-
eration for open-ended multi-trajectory environments, and vi-
sion—language navigation (VLN) for embodied interaction. To-
gether, these applications adapt panoramic generation for spatial
reasoning, immersive interaction, and controllable environments.
Constrained Scene Generation. leverages text-to-360° panora-
mas as holistic spatial priors for constructing immersive 3D
and 4D environments. SceneDreamer360 [323] and Dream-
Scene360 [324] synthesize high-quality panoramas with depth
estimation to reconstruct 3D Gaussian Splatting scenes, ensuring
high-resolution rendering and spatial fidelity. Similarly, Layer-
Pano3D [325] lifts layered decompositions into Gaussian fields
for progressive optimization, while HoloDreamer [326] employs
a multi-stage depth—geometry pipeline for view-consistent 3D
scenes. Extending to dynamics, HoloTime [327] generates ERP
videos for re-renderable 4D reconstruction, and 4K4DGen [328]
decomposes panoramas into perspective views and recovers spher-
ical geometry with 4D Gaussian fields.
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Fig. 10: Summary of future directions in panoramic vision: (1) Data Bottlenecks, emphasizing challenges in scale, diversity, quality,
and multi-modality; (2) Model Paradigms, covering foundation models, expert models, multi-modal integration, and models for
panoramic generation; and (3) Applications, including spatial intelligence and autonomous systems, XR and immersive interaction, 3D
reconstruction and digital twins, and broader societal applications such as security, education, entertainment, and healthcare.

Unconstrained World Generation extends panoramic generation
from single-scene synthesis to open-ended, explorable 3D worlds.
Matrix-3D [330] employs trajectory-guided panoramic video dif-
fusion conditioned on mesh renders for precise camera control,
lifting generated 360° videos into navigable 3D via either fast
panorama reconstruction or high-fidelity 3DGS pipelines. Com-
plementarily, HunyuanWorld 1.0 [329] builds interactive worlds
from text or a single image through semantic layering, layer-
aligned depth, and mesh-based reconstruction, combining fore-
ground asset warping, HDR sky modeling, and world-consistent
video diffusion for long-range exploration.

Vision-Language Navigation (VLN) leverages text-to-360° gen-
eration to provide panoramic context and semantically consistent
observations for instruction following. PANOGEN [331] and
PANOGEN++ [332] generate realistic panoramas from room
descriptions with semantic layouts and orientation-aware object
placement, enriching VLN training. VLN-RAM [333] expands
unseen coverage by rewriting scenes and instructions with object-
aware augmentation, while Any2Omni [334] introduces a large-
scale dataset and a spatially consistent Transformer (Omni?) for
panoramic generation and editing.

5 CHALLENGES AND FUTURE WORKS

Despite rapid progress, panoramic vision still faces fundamental
challenges that limit its scalability, robustness, and deployment in
real-world scenarios. Based on the analysis of existing methods,
we highlight future research opportunities from three complemen-
tary perspectives: data, models, and applications.

5.1 Data Bottlenecks

Compared with perspective vision, a major bottleneck for
panoramic vision is data scarcity. Existing datasets (a comparative
summary with perspective datasets is provided in supplementary

material) remain limited in scale, diversity, quality, and modal-
ity, thereby constraining model generalization and hindering fair
benchmarking.
Scale. Large-scale, standardized 360° image and video datasets
across diverse tasks and scenarios remain scarce, constraining
model training and reproducible evaluation.
Diversity. Most existing datasets concentrate on indoor or urban
settings, with limited coverage of natural, aerial, or mixed environ-
ments, thus seriously constraining progress towards open-world
generalization.
Quality. High-quality annotated panoramic datasets for tasks
such as depth estimation, segmentation, detection, tracking, and
mapping remain limited, particularly with fine-grained labels in
real-world scenarios.
Multi-Modality. Panoramic image—text and video—text resources
remain limited, restricting advances in language-guided genera-
tion, VQA, and cross-modal reasoning.

Overall, future progress depends on constructing large-scale,
foundational, standardized, multi-modal datasets to enhance gen-
eralization, comparability, and performance across various tasks.

5.2 Model Paradigms

Progress in panoramic vision is closely tied to advances in model
design, ranging from general foundation frameworks to task-
specific expert architectures, and further extending to multimodal
and generative paradigms. A major challenge is to develop models
that can effectively adapt to panorama-specific representations
while progressing toward three key goals: (1) strong ability
for generalization and zero-shot transfer, (2) unified all-in-one
architectures that jointly support multiple tasks, and (3) world
modeling techniques capable of open-world understanding and
scene generation.

Foundation Models. Training paradigms such as self-/un-
supervision, contrastive learning, and masked modeling require



adaptation to 360° data. An important direction is to transfer
knowledge from foundational perspective models to panoramic
domains, thereby reducing the domain gap and improving ef-
ficiency. Future foundation models should emphasize on zero-
shot robustness, ensuring reliable performance in novel panoramic
environments under limited supervision.

Expert Models. In addition to general-purpose foundation mod-
els, task-specific expert models remain essential. On the one
hand, incorporating panoramic characteristics into task-specific
architecture designs can lead to better efficiency and accuracy.
On the other hand, for tasks such as detection, segmentation,
depth estimation, and temporal analysis, integrating pre-trained
base networks with parameter-efficient expert modules can further
boost performance while preserving generalization.
Multi-Modality and Panoramic Generation. Existing multi-
modal frameworks still struggle to handle panoramic-specific
properties such as spatial continuity and distortion distribution.
Future developments may involve incorporating panoramic priors
into architectures that better align vision, language, and audio.
Detailed promising directions include: (1) panorama-language
alignment for improved grounding, (2) unified frameworks that
integrate generation and understanding, (3) world models for
continuous and interactive panoramic scene synthesis, and (4)
open-world adaptation to unseen semantics.

While understanding and generation are inherently coupled in
multi-modal panoramic systems, advancing panoramic generation
remains equally important. Key challenges include: (i) developing
specialized evaluation metrics, (ii) preserving realistic distortion
patterns, (iii) ensuring consistency near poles, and (iv) modeling
curved motion trajectories distinct from those in perspective video.
In addition, panoramic video generation poses further difficulties
in maintaining spatiotemporal coherence.

5.3 Application

Spatial Intelligence and Autonomous Systems. 360° panoramic
vision provides a complete environmental context, which inher-
ently aligns with the demands of spatial intelligence. By eliminat-
ing blind spots and enhancing global perception, it enables robust
scene understanding and decision-making, which is particularly
crucial for embodied intelligence, autonomous driving, and UAV
navigation, where comprehensive situational awareness directly
supports safety and reliability.

XR and Immersive Interaction. From panoramic recording to
high-resolution content generation, 360° vision forms the corner-
stone of extended reality (XR). Future directions include integrat-
ing spatial audio, haptic feedback, and other multi-sensory modal-
ities to create a holistic, immersive interaction paradigm. More-
over, supporting rich and perceptually aligned human-computer
interaction across the human senses, together with lightweight
deployment on portable devices such as VR/AR glasses, will drive
practical adoption and daily usage.

3D Reconstruction and Digital Twins. Panoramic imaging cap-
tures holistic scene information, enabling the complete recon-
struction of 3D environments and the creation of digital twins.
Applications range from 3D mapping and spatial digital archiving
to virtual model generation, supporting fields such as smart city
development and cultural heritage preservation.

Broader Societal Applications. Beyond the above technical di-
rections, panoramic vision also holds broad prospects for practical
use in various domains. It can enhance security and surveillance
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through full-scene monitoring with fewer blind spots, enrich
education and training via immersive content delivery, enable
new forms of entertainment and media through high-fidelity
360° capture and generation, and support healthcare with XR-
assisted telemedicine and rehabilitation. These examples highlight
its transformative potential across diverse industries.

6 CONCLUSION

This survey provides a comprehensive overview of panoramic vi-
sion, aiming to bridge the gaps between panoramic and perspective
representations. First, we analyze panoramic imaging systems and
projection models, which reveal the unique geometric characteris-
tics underlying the fundamental gaps between panoramic and per-
spective representations: geometric distortion, non-uniform spatial
sampling, and boundary continuity. Next, we conduct both cross-
method and cross-task analysis across more than 20 representative
tasks, synthesizing common strategies while highlighting their
advantages, limitations, and applicability. Finally, we outline sev-
eral future directions, including building larger and more diverse
datasets, developing foundational, multimodal, and generation
models, and extending to broader downstream applications such as
embodied intelligence, autonomous driving, and immersive media.
Overall, this survey serves as both a comprehensive reference
and a forward-looking guide for the continued development of
panoramic vision.
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APPENDIX

This supplementary material document provides a detailed in-
troduction of some common projection formats, task-specific
future directions, and a comparison of perspective and panoramic
datasets. The supplementary material is organized as follows:

1. Projection.
2. Future Work by Tast.
3. Comparison of Perspective and Panoramic Datasets.

PROJECTION

Here, we provide a more detailed summary of representative
projections commonly adopted in panoramic vision beyond the
main text, with a focus on their characteristics and limitations.
Spherical Projection. A 360° camera can be modeled as a pinhole
at the center of a unit sphere, projecting all visible 3D points onto
its surface without requiring traditional intrinsic parameters [350]—
[352]. A 3D point in the world Cartesian coordinate system
P = [z,y, z]T is first transformed into spherical coordinates
(p,0,9), where p = /x2+y? + 22, § = arccos(z/p), and
¢ = arctan2(y,x). By normalizing with respect to p, the
point is mapped onto the unit sphere, yielding the unit vector
p = (sinfcos¢, sinfsing, cosf) = (z',y',2’). The unit
sphere is centered at the origin of the world coordinate system.
This spherical projection provides a unified, distortion-free repre-
sentation of all viewing directions, serving as a fundamental basis
for analyzing panoramic images and videos.

Equirectangular Projection (ERP). As the most common format
for 360-degree panoramas, ERP maps spherical coordinates (¢, 6)
directly and uniformly to a 2D image plane: ¢ (longitude) to the
horizontal axis and 6 (latitude) to the vertical axis, with sampling
intervals A¢ = 27/w and Af = x/h for image width w and
height h (typically w = 2h). A pixel (u,v) corresponds to
(¢,0) = (u-A¢p — 7, v-Af). Such a simple bijective mapping
is analogous to the transformation of the Earth’s spherical surface
into a world map, making ERP efficient for rendering, editing, and
training vision models. Unless specified otherwise, we use ERP as
the default projection in this survey.

Cubemap Projection (CMP). The CMP is a widely used alterna-
tive to ERP that alleviates geometric distortions, particularly the
stretching near the poles. It projects spherical content onto the
six faces of a cube, each covering a 90° x 90° field of view.
Each cube is centered at the camera origin, with faces oriented
toward the front, back, left, right, top, and bottom. For a 3D point
p = [2',9, 2'] on the unit sphere, the face index is determined
by the dominant coordinate axis, and the point is projected onto
that face via perspective projection. For example, if P maps to the
front face, the 2D coordinates are

z Y
U=-—, U=
2| |2l
Each face is rendered as a w X w square, producing a complete 6
unfolded layouts. Overall, the CMP provides a distortion-reduced,
face-based representation well-suited for panoramic rendering and
processing.
Tangent Projection (TP). To adapt perspective models for high-
resolution spherical data, [353] proposes TP, which renders an
omnidirectional image as local planar grids tangent to the faces of
a subdivided icosahedron. As illustrated in Fig. 2(c), each patch is
obtained from a gnomonic projection [354], mapping a point P;
in the sphere to a tangent plane centered at P.. A point in the unit
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sphere with spherical coordinates (6, ¢) is projected directly onto
a tangent plane centered at (0., ¢.), yielding plane coordinates

(ug, vy):

cos ¢ sin(f — 6.)
U= ————""—""2
cos ¢
cos @, sin ¢ — sin ¢, cos ¢ cos(d — 0..)
V+ =
¢ cosc ’

where c is the central angle between (6, ¢) and the tangent point
(0c, ). cosc = sin g, sin ¢ + cos ¢ cos ¢ cos(6 — .). The
inverse mapping follows the same geometric principle, enabling
one-to-one correspondence between spherical coordinates and tan-
gent patches [229]. Overall, TP preserves local geometric fidelity
and reduces distortion compared to ERP. It also allows the reuse
of standard perspective vision models on spherical imagery.
Polyhedron Projection (PP). To reduce distortions from mapping
spherical images to planar formats while preserving directional
continuity, PP [355] approximates the sphere with a subdivided
polyhedron, such as an octahedron or icosahedron. Each face of
the base polyhedron can be recursively divided into four smaller
faces, increasing resolution and reducing distortion [355]. For
instance, an icosahedron at level [ yields 20 X 4! triangular faces,
providing a near-uniform sphere sampling.

Panini Projection. The Panini projection mitigates the strong
distortions of rectilinear projection at wide fields of view (typically
> 70°) by preserving vertical and radial lines while non-linearly
compressing the horizontal field. It maintains a strong central per-
spective without exaggerating objects near the periphery. Specif-
ically, the mapping consists of projecting a unit spherical point
(¢,0) to a cylinder, followed by a rectilinear projection from a
variable center:

g d+1 7
d + cos ¢
where d > 0 controls horizontal compression. d = 0 yields a
rectilinear projection, d = 1 produces a cylindrical stereographic
projection, and d — oo approximates the orthographic projec-
tion. This flexibility enables a smooth trade-off between central
magnification and edge compression.
Other projections. Apart from the aforementioned popular pro-
jection formats, there are several other formats supported by the
360Lib software package for coding and processing [356]. They
include adjusted equal-area projection (AEP), truncated square
pyramid projection (TSP), adjusted cubemap (ACP), rotated
sphere projection (RSP), equatorial cylindrical projection (ECP),
equiangular cubemap (EAC), and hybrid equiangular cubemap
(HEC). Especially, as a map-based projection, AEP adaptively
decreases the sampling rate in vertical coordinates and avoids the
over-sampling problem in ERP. Equi-Angular Cubemap (EAC)
projection [357] maintains spatial sampling rates for different
sampling locations on the faces of the cubes to alleviate distortions
in CP.

h=S5-singp, v=.5-tan,

COMPARISON OF PERSPECTIVE AND PANORAMIC
DATASETS.

Table 1 shows a striking imbalance phenomenon between per-
spective and panoramic datasets across a wide range of tasks.
For perspective vision, large-scale datasets such as Open Images
(9.2M images), Objects365 (600k images), and ScanNet (5M
frames) have provided abundant data to train powerful foundation
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TABLE 1: Comparison of Perspective and Panoramic Datasets across Multiple Tasks

Task Perspective Dataset Data Size Source Panoramic Dataset Data Size Source

RTMV [358] 300k Synthetic 360SP [359] 15,730 Real
Generation SPAREF [360] 1™ Synthetic HDR360-UHD [272] 4,392 Real
ACC-NVSI [361] 148k Real Laval Indoor HDR [362] 2,100 Real
Para-Lane [363] 80k Real Laval Outdoor HDR [202] 205 Real
S GamelR-SR [364] 19,200 Synthetic ODI-SR [365] 1,000 Real
Resoutic GameIR-NVS [364] 57,600  Synthetic Flickr360 [366] 3,150 Real
ImageParis [367] 11,421 Real ODV360 [366] 250 Real
MS COCO [2] 328k Real 360-Indoor [368] 3,000 Real
Pascal VOC [369] 21k Real ERA [126] 903 Real
Object Detection Open Images V7 [370] 1.9M Real OVS [371] 600 Real
Objects365 [372] 600k Real PANDORA [373] 3,000 Real

BDDI100K [374] 100k Real COCO-Men [343] 7,000 Synthetic
Seementation LVIS [375] 164k Real PASS [105] 1,050 Real
g Open Images V4 [376] 9.2M Real WildPASS [377] 2,500 Real
. . ScanNet [378] M Synthetic Stanford2D3D [379] 1,413 Real

Depth Estimat

€pE Ssmation SDCD [380] 930k Real Deep360 [381] 2,100 Real
Saliency Prediction SALICON [382] 10k Real Salient360! [383] 85 Real
y CAT2000 [384] 4k Real PVS-HM [385] 76 Real

Room Layout LSUN Room Layout [386] 5,394 Real Pano3DLayout [387] 107 Synthetic

Fig. 11: Equirectangular projection (ERP) mapping spherical co-
ordinates (¢, #) to image pixels (u, v), analogous to flattening the
Earth onto a world map.

Fig. 12: Cubemap projection (CMP) mapping spherical content
onto six cube faces via perspective projection, reducing polar
distortions compared with ERP.

models. By contrast, panoramic datasets remain relatively scarce,
often orders of magnitude smaller: PASS has only 1,050 anno-
tated panoramas for segmentation, WildPASS 2,500 samples, and
Deep360 merely 2k panoramic depth maps. Even in generation
and super-resolution tasks, panoramic datasets usually contain
only a few thousand samples, compared with hundreds of thou-
sands or even millions on the perspective side.

This imbalance highlights a critical bottleneck: the lack of
large-scale, diverse, and richly annotated panoramic datasets hin-
ders the development of generalizable models and fair benchmark-
ing across tasks. While perspective vision has benefited greatly

Fig. 13: Tangent projection (TP) maps spherical points onto
tangent planes via gnomonic projection, preserving local geometry
and enabling perspective model reuse.
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Fig. 14: Summary of Future Directions in Visual Quality Enhance-
ment and Assessment.

from the scale of data, panoramic vision is still constrained by
limited data availability, preventing models from fully exploiting
the potential of 360° understanding and generation. Bridging this
gap is therefore an urgent priority for the community, calling for
systematic efforts in panoramic data collection, annotation, and
benchmark design.

FUTURE WORK BY TASK
Visual Quality Enhancement and Assessment

As summarized in Fig. 14, future research on visual quality
enhancement and assessment for panoramic vision can be explored
along several directions.



Visual
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Fig. 15: Summary of Future Directions in Visual Understanding.

Super-Resolution: Leverage diffusion models with textual guid-
ance for semantically aware panoramic restoration, improve real-
time efficiency via pruning and architectural optimization, and
incorporate modules specialized for key categories such as human
faces.

Reflection Removal: Move toward reflection separation by lever-
aging text or auxiliary cues to disentangle reflection and trans-
mission, while extending to outdoor scenarios with semantic and
multimodal understanding to improve robustness and generaliza-
tion.

Image Restoration: Address diverse degradations (e.g., rain,
snow, fog, low-light). Current models are often single-task and
trained on synthetic data, highlighting the need for more gener-
alized all-in-one approaches and unsupervised or self-supervised
frameworks that adapt to real-world panoramic conditions.
Visual Quality Assessment: FR-OIQA often assumes perfect
references, which is unrealistic given sensor noise and stitching
artifacts; future work should jointly assess fidelity and percep-
tual naturalness, particularly in generative enhancement scenarios.
Meanwhile, NR-OIQA suffers from limited supervision and weak
generalization; integrating vision—language pipelines with LLMs
can provide semantic priors and subjective cues to improve distor-
tion reasoning and quality prediction.

Visual Understanding

Future directions in panoramic visual understanding are summa-
rized in Fig. 15.

Segmentation: Use generative models (e.g., diffusion, masked
autoencoders) to improve representation learning and zero-shot
transfer; adopt multi-task learning with generation tasks (e.g.,
inpainting, novel view synthesis) to yield richer features; and
leverage large vision—language models for open-world segmen-
tation with weakly supervised multimodal alignment.

Detection: Employ prompt-driven detection for flexible zero-shot
queries; integrate multimodal inputs (RGB, depth, thermal, text) to
improve robustness and generalization; and adopt open-vocabulary
detection to foster lifelong learning and uncertainty awareness.
Future progress hinges on integrating these capabilities with large-
scale vision—-language understanding and continual learning for
safe, scalable detection.

Tracking: Explore zero-shot paradigms with vision—language
models for prompt-based initialization and semantic reasoning,
unified frameworks integrating detection, tracking, and segmenta-
tion for spatiotemporal consistency, and cross-view or multimodal
fusion for robustness under occlusion. Uncertainty-aware designs
further enable long-term, real-world deployment, pointing toward
more open, semantic-aware, and generalizable tracking systems.
Pose Estimation: Improve generalization and reduce annotation
reliance by leveraging generative priors for model-free object
pose, enhance robustness in category-level tasks with symmetry-

26

Fusion Modeling with Audio

Unified Multimodal

[ Framework

Audio-Conditioned Perception Personalization with Users

Coupled Audio-Vision Generation Embodied Agents for VR

Multi-modal
Understanding

‘Temporal Fusion with Motion Compensation
Open-Vocabulary Framework

Self-Supervised Cross/View Learning

Fusion Perception with LiDAR

Fig. 16: Summary of Future Directions in Multi-modal Under-
standing.

aware and adaptive methods, and advance unsupervised fa-
cial/head pose estimation via geometric cues, temporal coherence,
and pre-trained representations.

Saliency Prediction: Develop unified frameworks combining
distortion-aware architectures, dynamic attention, and multi-
modal cues under spherical representations, while leveraging self-
supervised panoramic video learning and cross-task transfer (e.g.,
saliency to scanpath) for robust and human-aligned saliency mod-
eling.

Layout Detection: Generalize beyond Manhattan-aligned scenes
to non-Manhattan, multi-level, or dynamic layouts. Dataset scale
and diversity remain insufficient, highlighting the need for larger,
richly annotated multi-view panoramas. Integrating multimodal
cues (e.g., depth, audio, inertial data, language) could further
ground layout estimation in embodied perception, enabling more
intelligent agents in immersive environments.

Optical Flow Estimation: Advance multi-modal panoramic flow
by integrating RGB-D cues for robustness under occlusion or low
light, and leverage event cameras for low-latency, HDR motion
capture. Networks that fuse event streams with image-based
representations via spatiotemporal alignment or neural fusion,
supported by dedicated RGB-Event or RGB-D datasets, could
enable more consistent and reliable flow estimation in challenging
conditions.

Keypoint Matching: Develop spherical frameworks with
rotation-equivariant features, incorporate multi-view constraints
for robust correspondence, and build large-scale benchmarks with
ground-truth panoramic matches.

Decomposition: Develop unified spherical models capable of
handling dynamic scenes and complex materials, supported by
larger and more diverse panoramic datasets.

Lighting Estimation: Current generative methods remain limited
under diverse outdoor and dynamic lighting, motivating the use
of temporal cues and multimodal signals. Physically inspired
approaches need hybrid physics—data models for greater realism
and interpretability. Structured pipelines should be optimized for
real-time, lightweight VR/AR deployment, while diverse HDR
panoramic datasets with scene—illumination pairs are essential for
robust generalization.

Depth Estimation: Tackle the shortage of high-quality RGB-D
panoramas by building large-scale datasets for foundation models.
Advances may come from spherical prompting and task adaptation
for better transfer, cross-sensor fusion with LiDAR or IMU for
real-world robustness, and extending beyond ground-level to aerial
and sky-view scenarios.

Multi-modal Understanding

As illustrated in Fig. 16, multi-modal understanding provides rich
future directions.
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Fig. 17: Summary of Future Directions in Generative-modeling-
based Tasks.

Fusion Modeling with Audio: Pursue unified embeddings of
spatial, semantic, and temporal cues, audio-conditioned perception
for attention and control, and real-time multimodal modeling for
embodied Al. Key challenges include reverberation, occlusion-
aware propagation, and adaptive feedback, while coupled au-
dio—vision generation (e.g., text-conditioned 4D synthesis with
ambient sound) offers another promising path.

Fusion Perception with LiDAR: Explore self-supervised learn-
ing with cross-view/modal consistency for robust features, open-
vocabulary detection and segmentation via vision—language inte-
gration, and temporal fusion with motion compensation to improve
dynamic scene perception.

Fusion with Text: Advance open-vocabulary detection and
viewpoint-aware grounding, develop lightweight and distortion-
aware models for efficient deployment, enhance personalization
through user intent and preference alignment, and enable em-
bodied agents for VR instruction following, spatial dialogue, and
multimodal 360° interaction.

Generative-modeling-based Tasks

Finally, as summarized in Fig. 17, generative modeling for
panoramic data opens several new avenues.

Text-guided Generation: Build large-scale, captioned 360°
datasets to improve scalability and semantic grounding; explore
autoregressive and hybrid frameworks beyond diffusion for long-
range spherical modeling; and advance high-resolution generation
by overcoming memory and architectural constraints. Tackling
these directions will enable semantically aligned, visually con-
sistent panoramic content for diverse downstream applications.
Image Completion: Expand dataset scale, diversity, and realism
to improve generalization; enhance controllability for fine-grained
semantic and geometric editing; and improve the generation of
high-frequency, coherent textures over large missing regions.
Promising directions include building richer datasets, developing
interactive and viewpoint-aware frameworks, and integrating ex-
ternal priors with multimodal cues for more realistic and control-
lable 360° scene completion.

Novel View Synthesis: Leverage generative models for view
synthesis and completion, integrate open-vocabulary semantics for
object-centric understanding, jointly model motion and geometry
for dynamic scenes, and reduce reliance on dense posed inputs to
enable sparse-view, unposed reconstruction in real-world settings.
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